Действительные числа
Натуральные числа
Разложение натуральных чисел на множители
Ответы к стр. 13
46. Что называют делителем натурального числа? Назовите делители числа 12.
Делителем натурального числа является такое число, на которое это натуральное число делится без остатка. Делители числа 12: 1, 2, 3, 4, 6, 12.
47. Что называют простым делителем натурального числа? Назовите простые делители числа 12.
Простым делителем натурального числа называют его делитель, который является простым числом. Простые делители числа 12: 2, 3.
48. Назовите все делители числа:
а) 17; б) 45; в) 113; г) 476; д) 32.
а) делители числа 17: 1, 17;
б) делители числа 45: 1, 3, 5, 9, 15, 45;
в) делители числа 113: 1, 113;
г) делители числа 476: 1, 2, 4, 7, 14, 17, 28, 34, 68, 119, 238, 476;
д) делители числа 32: 1, 2, 4, 8, 16, 32.
49. Найдите все простые делители числа:
а) 19; б) 54; в) 112; г) 232.
а) 19 | 19
1 |
19 = 1 • 19
Простые делители числа 19: 19.
б) 54 | 2
27 | 3
9 | 3
3 | 3
1 |
54 = 2 • 3 • 3 • 3 = 2 • 33
Простые делители числа 54: 2, 3.
в) 112 | 2
56 | 2
28 | 2
14 | 2
7 | 7
1 |
112 = 2 • 2 • 2 • 2 • 7 = 24 • 7
Простые делители числа 112: 2, 7.
г) 232 | 2
116 | 2
58 | 2
29 | 29
1 |
232 = 2 • 2 • 2 • 29 = 23 • 29
Простые делители числа 232: 2, 29.
50. Напишите пять натуральных чисел, не имеющих других простых делителей, кроме 2 и 5, и пять натуральных чисел, не обладающих этим свойством.
Пять натуральных чисел, не имеющих других простых делителей, кроме 2 и 5:
2 • 5 = 10;
22 • 5 = 4 • 5 = 20;
23 • 5 = 8 • 5 = 40;
25 • 5 = 32 • 5 = 160;
2 • 53 = 2 • 125 = 250.
Пять натуральных чисел, имеющие другие простые делители 3 и 7:
3 • 7 = 21;
32 • 7 = 9 • 7 = 63;
3 • 72 = 3 • 49 = 147;
33 • 7 = 27 • 7 = 189;
32 • 72 = 9 • 49 = 441.
51. Приведите примеры натуральных чисел, имеющих делители 3 и 4. Какие делители, кроме указанных, имеют выбранные натуральные числа?
Натуральные числа, имеющие делители 3 и 4: 12, 24, 36.
Число 12 имеет также делители: 1, 2, 6, 12.
Число 24 имеет также делители: 1, 2, 6, 8, 12, 24.
Число 36 имеет также делители: 1, 2, 6, 9, 12, 36.
52. Приведите примеры натуральных чисел, не имеющих других простых делителей, кроме 3 и 5.
3 • 5 = 15;
32 • 5 = 9 • 5 = 45;
3 • 52 = 3 • 25 = 75.
53. Найдите все делители чисел: 2, 6, 12, 28, 48, 100.
2 | 2
1 |
делители числа 2: 1, 2;
6 | 2
3 | 3
1 |
делители числа 6: 1, 2, 3, 6;
12 | 2
6 | 2
3 | 3
1 |
2 • 2 = 4,
2 • 3 = 6
делители числа 12: 1, 2, 3, 4, 6, 12;
28 | 2
14 | 2
7 | 7
1 |
2 • 2 = 4,
2 • 7 = 14
делители числа 28: 1, 2, 4, 7, 14, 28;
48 | 2
24 | 2
12 | 2
6 | 2
3 | 3
1 |
2 • 2 = 4,
2 • 3 = 6,
2 • 2 • 2 = 8,
2 • 2 • 3 = 12,
2 • 2 • 2 • 2 = 16,
2 • 2 • 2 • 3 = 24
делители числа 48: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48;
100 | 2
50 | 2
25 | 5
5 | 5
1 |
2 • 2 = 4,
2 • 5 = 10,
2 • 2 • 5 = 20,
5 • 5 = 25,
2 • 5 • 5 = 50
делители числа 48: 1, 2, 4, 5, 10, 20, 25, 50, 100.
54. Найдите все простые делители чисел:
а) 4, 9, 15, 10, 24; б) 46, 50, 58, 99, 128;
в) 196, 254, 400, 625, 10 000; г) 7, 77, 777, 7777, 77 777.
а) 4 | 2
2 | 2
1 |
простые делители числа 4: 2;
9 | 3
3 | 3
1 |
простые делители числа 9: 3;
15 | 3
5 | 5
1 |
простые делители числа 15: 3, 5;
10 | 2
5 | 5
1 |
простые делители числа 10: 2, 5;
24 | 2
12 | 2
6 | 2
3 | 3
1 |
простые делители числа 24: 2, 3;
б) 46 | 2
23 | 23
1 |
простые делители числа 46: 2, 23;
50 | 2
25 | 5
5 | 5
1 |
простые делители числа 50: 2, 5;
58 | 2
29 | 29
1 |
простые делители числа 58: 2, 29;
99 | 3
33 | 3
11 | 11
1 |
простые делители числа 99: 3, 11;
128 | 2
64 | 2
32 | 2
16 | 2
8 | 2
4 | 2
2 | 2
1 |
простые делители числа 128: 2;
в) 196 | 2
98 | 2
49 | 7
7 | 7
1 |
простые делители числа 196: 2, 7;
254 | 2
127 | 127
1 |
простые делители числа 254: 2, 127;
400 | 2
200 | 2
100 | 2
50 | 2
25 | 5
5 | 5
1 |
простые делители числа 400: 2, 5;
625 | 5
125 | 5
25 | 5
5 | 5
1 |
простые делители числа 625: 5;
10 000 | 2
5000 | 2
2500 | 2
1250 | 2
625 | 5
125 | 5
25 | 5
5 | 5
1 |
простые делители числа 10 000: 2, 5;
г) 7 | 7
1 |
простые делители числа 7: 7;
77 | 7
11 | 11
1 |
простые делители числа 77: 7, 11;
777 | 3
259 | 7
37 | 37
1 |
простые делители числа 777: 3, 7, 37;
7777 | 7
1111 | 11
101 | 101
1 |
простые делители числа 7777: 7, 11, 101;
77 777 | 7
11 111 | 41
271 | 271
1 |
простые делители числа 77 777: 7, 41, 271.
55. Разложите на простые множители числа, т.е. запишите число в виде произведения степеней простых чисел:
а) 16, 18, 26; б) 35, 48, 72;
в) 144, 210, 800; г) 216, 343, 384;
д) 1024, 1728, 1575; е) 9225, 1001, 1739.
а) 16 | 2
8 | 2
4 | 2
2 | 2
1 |
16 = 24
18 | 2
9 | 3
3 | 3
1 |
18 = 2 • 32
26 | 2
13 | 13
1|
26 = 2 • 13
б) 35 | 5
7 | 7
1 |
35 = 5 • 7
48 | 2
24 | 2
12 | 2
6 | 2
3 | 3
1 |
48 = 24 • 3
72 | 2
36 | 2
18 | 2
9 | 3
3 | 3
1 |
72 = 23 • 32
в) 144 | 2
72 | 2
36 | 2
18 | 2
9 | 3
3 | 3
1 |
144 = 24 • 32
210 | 2
105 | 3
35 | 5
7 | 7
1 |
210 = 2 • 3 • 5 • 7
800 | 2
400 | 2
200 | 2
100 | 2
50 | 2
25 | 5
5 | 5
1 |
800 = 25 • 52
г) 216 | 2
108 | 2
54 | 2
27 | 3
9 | 3
3 | 3
1 |
216 = 23 • 33
343 | 7
49 | 7
7 | 7
1 |
343 = 73
384 | 2
192 | 2
96 | 2
48 | 2
24 | 2
12 | 2
6 | 2
3 | 3
1 |
384 = 27 • 3
д) 1024 | 2
512 | 2
256 | 2
128 | 2
64 | 2
32 | 2
16 | 2
8 | 2
4 | 2
2 | 2
1 |
1024 = 210
1728 | 2
864 | 2
432 | 2
216 | 2
108 | 2
54 | 2
27 | 3
9 | 3
3 | 3
1 |
1728 = 26 • 33
1575 | 3
525 | 3
175 | 5
35 | 5
7 | 7
1 |
1575 = 32 • 52 • 7
е) 9225 | 3
3075 | 3
1025 | 5
205 | 5
41 | 41
1 |
9225 = 32 • 52 • 41
1001 | 7
143 | 11
13 | 13
1 |
1001 = 7 • 11 • 13
1739 | 37
47 | 47
1 |
1739 = 37 • 47
56. Сколько чисел от 1 до 100:
а) делится на 2; б) делится на 5;
в) делится на 2 и на 5; г) не делится на 2 и на 5?
а) 100 : 2 = 50 — чисел, делящихся на 2;
б) 100 : 5 = 20 — чисел, делящихся на 5;
в) 100 : (2 • 5) = 100 : 10 = 10 – чисел, делящихся на 2 и на 5;
г) 100 − 100 : (2 • 5) = 100 − 100 : 10 = 100 − 10 = 90 — чисел, не делящихся на 2 и на 5.
57. Сколько чисел от 1 до 100 не делится ни на 2, ни на 3?
100 : 2 = 50 – чисел, делящихся на 2;
100 : 3 = 33 1/3 ≈ 33 – чисел, делящихся на 3;
100 : (2 • 3) = 100 : 6 = 16 2/3 ≈ 16 – чисел, делящихся и на 2 и на 3;
50 + 33 – 16 = 67 – всего чисел, делящихся на 2 и на 3
100 − 67 = 33 — числа от 1 до 100, не делящихся ни на 2, ни на 3.
← Предыдущая | Следующая → |