Обыкновенные дроби
Сложение дробей
Ответы к стр. 188
840. Девочка прочитала 2⁄5 книги, потом еще 1⁄5. Какую часть книги она прочитала?
2⁄5 + 1⁄5 = 2+1⁄5 = 3⁄5 (книги) — прочитала девочка
О т в е т: 3⁄5 книги.
841. а) За завтраком съели 3⁄8 торта, за обедом съели 5⁄8 торта. Весь ли торт съели?
б) За первый день машинистка перепечатала 7⁄16 рукописи, а за второй день — 1⁄2 рукописи. Закончила ли она перепечатку рукописи?
а) 3⁄8 + 5⁄8 = 3+5⁄8 = 8⁄8 = 1 (часть) — съели, то есть съели весь торт
О т в е т: съели весь торт.
б) 1) 7⁄16 + 1⁄2 = 7⁄16 + 1•8⁄2•8 = 7+8⁄16 = 15⁄16 (часть) — перепечатала машинистка
2) 15⁄16 < 1 — значит, машинистка перепечатала не всю рукопись
О т в е т: не закончила.
842. Первый тракторист вспахал 2⁄7 поля, второй — 3⁄7 поля. Вместе они вспахали 10 га. Какова площадь всего поля?
1) 2⁄7 + 3⁄7 = 2+3⁄7 = 5⁄7 (часть) — вспахали трактористы
2) 10 : 5 • 7 = 14 (га) — площадь всего поля
О т в е т: площадь поля 14 га.
843. а) За каждый час первая труба наполняет 1⁄2 бассейна, а вторая — 1⁄3 бассейна. Какую часть бассейна наполняют обе трубы за 1 ч совместной работы?
б) Первая бригада может выполнить за день 1⁄12 задания, а вторая — 1⁄8 задания. Какую часть задания выполнят две бригады за 1 день совместной работы?
в) Легковая машина в час проезжает 1⁄10 расстояния между городами, а грузовая — 1⁄12 этого расстояния. На какую часть этого расстояния в час будут сближаться машины при движении навстречу друг другу?
а) 1⁄2 + 1⁄3 = 1•3⁄2•3 + 1•2⁄3•2 = 3+2⁄6 = 5⁄6 (часть) — бассейна наполняют обе трубы за час
О т в е т: 5⁄6 бассейна.
б) 1⁄2 + 1⁄8 = 1•4⁄2•4 + 1⁄8 = 4+1⁄8 = 5⁄8 (часть) — задания выполнят две бригады за 1 день совместной работы
О т в е т: 5⁄8 задания.
в) 1⁄10 + 1⁄12 = 1•6⁄10•6 + 1•5⁄12•5 = 6+5⁄60 = 11⁄60 (часть) — в час будут сближаться машины
О т в е т: 11⁄60 расстояния.
← Предыдущая | Следующая → |
Ответы по математике. 5 класс. Учебник. Никольский С.М., Потапов М.К., Решетников Н.Н., Шевкин А.В.