Перейти к содержимому

6 класс. Математика. Никольский. Учебник. Ответы к стр. 34

    Отношения, пропорции, проценты
    Задачи на перебор всех возможных вариантов


    Ответы к стр. 34

    144. Запишите все двузначные числа, в записи которых используются цифры:
    а) 1, 3, 9 без повторения; б) 1, 3, 9 с повторением;
    в) 2, 4, 6 без повторения; г) 2, 4, 6 с повторением.

    а) На первое место можно поставить любую из трёх цифр, на второе место можно поставить только одну из двух оставшихся цифр, то есть имеется 3 • 2 = 6 возможных вариантов записи двузначного числа: 13, 19, 31, 39, 91, 93;

    б) На первое место можно поставить любую из трёх цифр, на второе место можно поставить также одну из трёх цифр, то есть имеется 3 • 3 = 9 возможных вариантов записи двузначного числа: 11, 13, 19, 31, 33, 39, 91, 93, 99;

    в) На первое место можно поставить любую из трёх цифр, на второе место можно поставить только одну из двух оставшихся цифр, то есть имеется 3 • 2 = 6 возможных вариантов записи двузначного числа: 24, 26, 42, 46, 62, 64;
    г) На первое место можно поставить любую из трёх цифр, на второе место можно поставить также одну из трёх цифр, то есть имеется 3 • 3 = 9 возможных вариантов записи двузначного числа: 22, 24, 26, 42, 44, 46, 62, 64, 66.

    145. Запишите все двузначные числа, в записи которых используются цифры 0, 1, 5: а) без повторения; б) с повторением.

    а) На первое место можно поставить любую из трёх цифр, кроме нуля (то есть любую из двух цифр), на второе место можно поставить только одну из двух оставшихся цифр, то есть имеется 2 • 2 = 4 возможных вариантов записи двузначного числа: 10, 15, 50, 51;

    б) На первое место можно поставить любую из трёх цифр, кроме нуля (то есть любую из двух цифр), на второе место можно поставить также одну из трёх цифр, то есть имеется 2 • 3 = 6 возможных вариантов записи двузначного числа: 10, 11, 15, 50, 51, 55.

    146. Сколько двузначных чисел можно записать цифрами 9, 8, 7: а) с повторением цифр; б) без повторения цифр?

    а) На первое место можно поставить любую из трёх цифр, на второе место можно поставить также одну из трёх цифр, то есть имеется 3 • 3 = 9 возможных вариантов записи двузначного числа: 77, 78, 79, 87, 88, 89, 97, 98, 99.

    б) На первое место можно поставить любую из трёх цифр, на второе место можно поставить только одну из двух оставшихся цифр, то есть имеется 3 • 2 = 6 возможных вариантов записи двузначного числа: 78, 79, 87, 89, 97, 98.

    147. Сколько двузначных чисел можно записать цифрами 0, 2, 4, 6: а) с повторением цифр; б) без повторения цифр?

    а) На первое место можно поставить любую из четырёх цифр, кроме нуля (то есть любую из трёх цифр), на второе место можно поставить также одну из четырёх цифр, то есть имеется 3 • 4 = 12 возможных вариантов записи двузначного числа: 20, 22, 24, 26, 40, 42, 44, 46, 60, 62, 64, 66;

    б) На первое место можно поставить любую из четырёх цифр, кроме нуля (то есть любую из трёх цифр), на второе место можно поставить только одну из трёх оставшихся цифр, то есть имеется 3 • 3 = 9 возможных вариантов записи двузначного числа: 20, 24, 26, 40, 42, 46, 60, 62, 64.

    148. Четыре подружки купили 4 билета в кино. Сколькими различными способами они могут занять свои места в зрительном зале?

    Первая девочка может сесть на одно из четырёх мест, вторая девочка может выбрать себе одно из трёх оставшихся мест, третья девочка может выбрать себе одно из двух оставшихся мест, четвертая девочка может выбрать себе одно оставшееся место, то есть 4 • 3 • 2 • 1 = 24 способа занять места.

    149. Сколько двузначных; трёхзначных; четырёхзначных чисел можно составить, используя цифры 1, 2, 3, 4, 5 без повторения?

    На первое место можно поставить любую из пяти цифр, на второе место можно поставить только одну из четырёх оставшихся цифр, то есть имеется 5 • 4 = 20 возможных вариантов записи двузначного числа.

    На первое место можно поставить любую из пяти цифр, на второе место можно поставить только одну из четырёх оставшихся цифр, на третье место можно поставить только одну из трёх оставшихся цифр, то есть имеется 5 • 4 • 3 = 60 возможных вариантов записи трёхзначного числа.

    На первое место можно поставить любую из пяти цифр, на второе место можно поставить только одну из четырёх оставшихся цифр, на третье место можно поставить только одну из трёх оставшихся цифр, на четвёртое место можно поставить только одну из двух оставшихся цифр, то есть имеется 5 • 4 • 3 • 2 = 120 возможных вариантов записи четырёхзначного числа.

    150. Сколько двузначных; трёхзначных; четырёхзначных чисел можно составить, используя цифры 1, 2, 3, 4, 5 с повторением?

    На первое место можно поставить любую из пяти цифр, на второе место можно поставить также любую из пяти цифр, то есть имеется 5 • 5 = 25 возможных вариантов записи двузначного числа.

    На первое место можно поставить любую из пяти цифр, на второе и третье место можно поставить также любую из пяти цифр, то есть имеется 5 • 5 • 5 = 125 возможных вариантов записи трёхзначного числа.

    На первое место можно поставить любую из пяти цифр, на второе, третье и четвёртое место можно поставить также любую из пяти цифр, то есть имеется 5 • 5 • 5 • 5 = 625 возможных вариантов записи четырёхзначного числа.

    151. а) Все четырёхзначные числа, записанные цифрами 1, 2, 3, 4 без повторения, занумеровали в порядке возрастания чисел. Какой номер имеет число 4312?
    б) Все пятизначные числа, записанные цифрами 1, 2, 3, 4, 5 без повторения, занумеровали в порядке возрастания чисел. Какой номер имеет число 54 312?
    в) Все пятизначные числа, записанные цифрами 1, 2, 3, 4, 5 без повторения, выписывают в порядке возрастания. Сколько чисел в этом списке? Каким по счету в этом списке будет число 54 231?

    а) На первое место можно поставить любую из четырёх цифр, на второе место можно поставить только одну из трёх оставшихся цифр, на третье место можно поставить только одну из двух оставшихся цифр, на четвёртое место можно поставить только одну последнюю оставшеюся цифру, то есть имеется 4 • 3 • 2 • 1 = 24 возможных вариантов записи четырёхзначного числа. Число 4321 является наибольшим, а значит имеет 24 порядковый номер. Число 4312 идёт перед ним, следовательно, оно имеет 23 порядковый номер.

    б) На первое место можно поставить любую из пяти цифр, на второе место можно поставить только одну из четырёх оставшихся цифр, на третье место можно поставить только одну из трёх оставшихся цифр, на четвёртое место можно поставить только одну из двух оставшихся цифр, на пятое место можно поставить только одну последнюю оставшеюся цифру, то есть имеется 5 • 4 • 3 • 2 • 1 = 120 возможных вариантов записи пятизначного числа. Число 54 321 является наибольшим, а значит имеет 120 порядковый номер. Число 54 312 идёт перед ним, следовательно, оно имеет 119 порядковый номер.

    в) На первое место можно поставить любую из пяти цифр, на второе место можно поставить только одну из четырёх оставшихся цифр, на третье место можно поставить только одну из трёх оставшихся цифр, на четвёртое место можно поставить только одну из двух оставшихся цифр, на пятое место можно поставить только одну последнюю оставшеюся цифру, то есть имеется 5 • 4 • 3 • 2 • 1 = 120 возможных вариантов записи пятизначного числа. Число 54 321 является наибольшим, а значит имеет 120 порядковый номер. Число 54 312 идёт перед ним, следовательно, оно имеет 119 порядковый номер. А затем идёт число 54 231 под 118 порядковым номером.

    ← Предыдущая Следующая →

    Ответы по математике. 6 класс. Учебник. Никольский С.М., Потапов М.К., Решетников Н.Н., Шевкин А.В.

    Математика. 6 класс

    Понравилось? Оцени!

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *